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Summary—A treatment of the excitation of unidirectional plane

surface waves on a perfectly conducting screen covered with an

anisotropic plasma sheath is given for the case in which the external
magnetic field is oriented parallel to the screen but perpendicular
to the direction of propagation. The dispersion relations for the sur-
face waves and their dependence on the strength of the external mag-
netic field and the sheath thickness, are discussed. For sufficiently
small sheath thickness, backward surface waves are found to exist.
The powers carried by the surface waves and the space waves are
evaluated, and the efficiency of excitation of the surface waves are

determined as a function of sheath thickness for a typical set of

parameters. The power carried by the forward and backward sur-

face waves are compared for two cases in which, in a given direction,

either one or both of these exist.

1. INTRODUCTION

T

HE EFFECT of a grounded dielectric slab on the

radiation pattern of an electromagnetic source has

been studied by a number of investigators. A

majority of these investigations pertain to the case of a

slab of isotropic dielectric. A complete survey of the

relevant literature may be found in the recent work of

Oliner and Tamir [1 ]– [4] who have given a compre-

hensive treatment of the electromagnetic field of a

source-excited, isotropic plasma slab. There have been

relatively fewer investigations of the effect of a slab of

anisotropic dielectric. Wait [5 ], [6] has treated the case

of a thin plasma sheet in free space as well as in the

vicinity of a ground screen. The radiation pattern of a

line source of magnetic current embedded in a plasma

slab has been investigated for the case of an external

magnetic field, perpendicular to the line source by

Shore and Meltz [7] and parallel to it by Hodara and

Cohn [8]. Ishimaru [9] has given an elegant treatment

of the effect of leaky waves on the radiation from a

plasma sheath. With the exception of the work of Wait,

who has treated only the case of a thin plasma sheet,

all of the above investigations of the anisotropic slab

problem have been restricted to the treatment of the

radiation pattern only. A systematic investigation of the

wave supporting properties of an anisotropic slab, sim-

ilar to the one carried out by Oliner and Tamir for the

isotropic case, is not available.

In this paper, a treatment of the radiation charac-

teristics of a slot excited plasma slab is given for a par-

ticularly simple orientation of the external magnetic

field. The slot is assumed to be infinitely long and

infinitesimally narrow, with the external magnetic field

oriented parallel to the slot. Particular emphasis is
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placed on the characteristics of the surface waves

guided along the plasma sheath. This problem is the

same as the one investigated by Hodara and Cohn

[8] who have not, however, considered tj-,e excitation

of the surface waves but have restricted their atten-

tion only to the radiation pattern.

The dispersion relations for the surface waves and

their dependence on the strength of the external

magnetic field and the sheath thickness, are examined

in detail. For sufficiently small sheath thickness, back-

ward surface waves are excited. The surface waves

propagating in the two directions have different char-

acteristics. The reversal of the direction clf the external

magnetic field reverses the direction of propagation of

the surface waves. The powers carried by the surface

waves and space waves are evaluated and the efficiency

of excitation of surface waves determined as a function

of the sheath thickness.

The power carried by the forward and tlhe backward

surface waves are compared for two cases in which

either one or both of them travel in a given direction.

For appropriate parameter values, only the backward

surface wave may exist in a particular clirection, en-

abling the possibility of its detection experimentally.

A comparison of the surface wave dispersion obtained

in this case, with those for a perfectly conducting screen

covered with a semi-infinite layer of plasma and for a

plane interface between a semi-infinite free space and a

semi-infinite gyrotropic plasma, is made for the low

frequency limit. This enables the assessment of the

importance of the role played by the two interfaces, the

ground screen and the vacuum-plasma interface, in guid-

ing the surface waves. There are three low-frequency

surface waves, one of which may be identified as the

unidirectional surface wave guided by the conducting

plane and the other two, as the surface waves guided by

the vacuum-plasma interface.

II. FORMULATION OF THE PROBLEM

Consider a perfectly conducting screen of infinite ex-

tent, located in the xy-plane, where x, y, and z form a

right-handed rectangular coordinate system (Fig. 1).

The region –CC <x<m, –~<y< co, and O<z<d is

filled with uniform plasma, and the rest of the half-

space z >0 is vacuum. At x = O, on the screen, there is a

slot which is infinitely long in the y-direction, i nfinitesi-

mally narrow in the x-direction and unifcn-ml y excited

with an electric field in the x-direction. The source may

therefore be represented by

E.($7 o) = Ezoa(x) . (1)
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Fig. l—Geometry of the problem.

A uniform static magnetic field B. is impressed in the

y-direction throughout the plasma.

The source (1) may be shown [IO], [11] to excite

only the E mode which consists of a single component

of the magnetic field I?u, specified by the following wave

equations:

Region I

[

dz

1
---+: +k2H.(x, z)=0 O<z<d

Region II

where,

(2)

(3)

(-la)

R=~, (lb)

UP

and UO, EO, up, and w, are, respectively, the permeability

and dielectric constant pertaining to vacuum and the

plasma and the gyromagnetic frequency of the elec-

trons. The nonvanishing components of the electric

field Ez(x, z) and E2(x, z) are obtained with the help of

the following relations:

Region I

Region 11

Note that all the field components are independent of

y, and the harmonic time dependence e–i”~ is implied

for all of them.

In addition to the radiation condition at z = w and

the boundary condition (1) for z = O, the following

boundary conditions must be satisfied at the vacuum-

plasma interface:

HU(X, d-) = 17V(.V, d+); Ez(.Y, d-) = Ez(z, d-). (6)

The solutions of (2) and (3) together with (1) and (6)

may be shown to yield the following integral expres-

sions for HU(X, z) :

+ (cl~ – & – i62~)e-i~(’-d)]e’~’d{

for O<z<d (7a)

where

and

III. SINGULARITIES OF

ford <z<~ (7b)

}ct2 – iczcr~o sin id (8)

for k>{

for k<f

for ko > f

for ko < ~. (9)

THE INTEGRAND

It is easily- seen that the integrands in (7a, b) are even

functions of & and the branch points occur on the real

axis only for ~ = ~ ko. The poles of the integrands in

(7a, b) obviously occur at the zeros of A(r). The neces-

sary condition for HU(X, z) to have surface wave con-

tributions is that A(r) should have real zeros, k,. Conse-

quently, the real roots k, of

A({) = O (lo)

will be considered first. Let

~ = koa &O = koao k, = ko~, kod = /?, (11)
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where it might be noted that ~$ is nondimensional. In

view of (9) and (1 1), it follows that

(12)

Together with (8) and (1 1), (10) may be recast in the

form

—Lm!o
tan/3a z . — . (13)

The right-hand side of (13) is not an even function of

~, with the result that the real roots f, of (13) are not

symmetrical about ~, = O. It may be shown that cz

changes sign when the direction of the external nlag-

netic field is reversed. Also when ea and {, both change

sign, (13) is unchanged. Therefore, the reversal of the

direction of the external magnetic field is seen to result

in the interchange of the positive and negative roots of

(13).

It is useful to examine first, the behavior of 61, 62, and

e/c I as a function of Q. With the help of (4b), the follow-

ing results may be easily established:

for 1< Q<:Q2

for O< ft<:fh

— .— m for fl,=o
c1

where

531

(ha)

(14b)

(14C)

(14d)

(1-le)

(14f)

(14g)

(14h)

(Iii)

(14j)

TR+4R2 -f-4 .—.
$21,3 = Q, == ~ 1 + R2. (15)

2

The behavior of 61, CZ, and e/el as a fUln~tiOr?l of Q, is cle-

picted in Fig. 2 for a particular value c)f R.
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In determining the real roots of (13), it is advanta-

geous to distinguish the following four cases:

For the cases 1 and 2, (13) which specifies ~. becomes

For (17) to hold, the following equalities must be simul-

taneously fulfilled:

()l–E tan~=(l
El

case 1:

( )

(18a, b)

l~ll~ol -:r.l~oltan~ ‘o
cl

case 2: same as (18) with tan replaced by tanh. (19a, b)

Since ~,’s (e/cI), it follows that 1 – (~,’/e~) z (ez’/c12)

and therefore, (18a, b) and (19a, b) are satisfied only for

a = O. Also the numerators of the integrands in (7a, b)

are seen to vanish for [ a] = O and hence, I al = O is not a

pole. Therefore, the integrands of (7a, b) do not have

real poles in the first two cases. Note that both the

cases 1 and 2 correspond to a fast wave, and it is to be

expected that there should be no fast wave with real

propagation constant for an open structure such as the

one considered in this paper.

For the cases 3 and 4, (13) becomes

{tan p] a I for case 3 (20)
——

(tanh D I a [ for case 4 (21)

A real ~. which satisfies (20) and (21) can be found. In

view of (14h), the conditions (,2 z 1 and ~t’ se/el can

be simultaneously fulfilled only in the frequency range

1 <Q< <l +-l?, but the conditions {.2> 1 and {.2 ~ Ejel

can be satisfied in the entire frequency range. Since {8 is

real and ~.’ > I, it follows from (7a, b) that the fields in

the vacuum region for the cases 3 and 4 decay ex-

ponentially transverse to the slab and propagate with-

out attenuation along the slab. For the case 3 (case 4),

the contribution to ZIv(x, z) given in (7a) arising from

a pole specified by (20) [(21)] is such that the fields

inside the plasma slab have a functional dependence on

z which is of the trigonometric (hyperbolic) type, and

the corresponding surface wave will be designated for

convenience as Type 1 (Type 2). Evidently, Type 1 sur-

face wave exists only in the frequency range 1 <Q

<dl+R2.

For <l +R’ <Q < co, if there is any surface wave at

all, it should obviously be of the type 2 and, therefore,

should arise from the real roots of (21). It will be shown

now that (21) has no real roots for ~l+l?z<fl< ~. Let

the denominator of the left side of (21) be denoted by

11(~, ). For v’l+R’ <Q < @, it follows from (14b and

6) that O~el <1 and 0< I ezl <1. If the orientation of the

external magnetic field is such that ez~~ <0, then D(r,)

<0 over the entire range of ~,. Even if czr. >0, it can be

shown that D(r.) <O. Let P(r.) = (1 CZI ~,] ao] )/( f.2–eJ.

It follows from the definition of .D(~,) and the fact

that ~.21 > cl, that D(~,) <O provided l’(~,) <1. Obvi-

ously, at the end points of the range of ~., namely 1 and

~, P(~,) <1. It can be easily shown that l’(~.) is a

maximum when ~,= ~cl/(2~1— 1). Consequently for

O <cl <~, P(~,) has no maximum in the range 1 <{, < ~.

Hence, it follows that P(~,) <1, as at the end points for

the entire range of ~.. For ~ <cl< 1, P(~,) has a maxi-

mum which is given by

R 1
P((,)ma= = —

2fl@z_R’–~”
(22)

For <l +R2 <L? < co, P({,)~,X and hence, P(~,) <1.

Therefore, D(~,) <0 for the entire range of f,. Since the

right-hand side of (21) as well as the numerator of the

left side of (21) is always positive for 1 <~,< ~, it fol-

lows that no real ~~ can satisfy (21) for v’1 +R2 <!2 < UJ

since the denominator of the left side of (21) is always

negative. Hence, it follows that the Type 2 surface

waves arising from the real roots of (21) exist only in the

frequency range O <Q < /1 +Rz. Since the Type 1 sur-

face waves exist only for 1 <Q< /1 +R2, it is clear that

the surface waves are restricted to the frequency range

0< Q<41+R2.

IV. DISPERSION CURVES FOR THE SURFACE WAVES

The real roots ~~ of (20) and (21) were obtained

numerically for three values of the parameter R which is

proportional to the external magnetic field, Since the

frequency u and the wave number k. of the surface

wave are respectively proportional to 0 and !2{., the dis-

persion diagram corresponds to a plot of Q vs $2{., and

these plots are depicted in Figs. 3–5 (pages 534–535). In

each case, the results are given for three values of the

thickness parameter ~, namely, ~ = 10, 1, and 0.1.

As was stated before, Type 1 surface waves exist only

for 1 <ti < ~1 +-R’. An examination of Figs. 3–5 shows

that for O = 1 there are no Type 1 surface waves. As

Q is increased beyond 1, the first Type 1 surface wave

comes into existence at a particular value of Q When !2
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is stilI further increased, the wave number of the surface

waves increases monotonically; other Type 1 surface

waves appear abruptly and then continue with increas-

ing O and fl~~. Theoretically, for !2 = ~1 +~, there is an

infinity of such waves. These surface waves have cfif -

ferent characteristics depending on whether they propa-

gate in the positive or the negative x-direction. The

Type 1 surface waves are seen to have a low-frequency

cutoff and are always forward waves in the sense that

their phase and group velocities are of the same sign,

In general, for a given Q in the range 1<0< {I+RZ, an

increase in the thickness ~ of the slab, results in an in-

crease of the number of the surface wave poles. It is

to be noted that the surface wave poles in the vicinity

of Q = ~1 +Rz, have not been determined and are not

included in Figs. 3–5.

For the Type 2 surface waves, it is seen that in gen-

eral, there is only one dispersion curve for positive val-

ues of the wave number, but there are two for negative

values of the wave number. For R = O. 1, the second dis-

persion curve for the negative values of the wave nrrm-

ber does not show up, but for R = 0.5 and 2.0, both the

dispersion curves are clearly seen. The Type 2 surface

waves have no low frequency cutoff. For very large

positive values of the surface wave number, the disper-

sion curve asymptotically reaches a particular value of

Q. The dispersion curve always finally approaches the

asymptote from smaller values of fl, but for very small

~, it crosses the asymptote twice and then, as for larger

values of ~, it approaches the asymptote from smaller

values of Q. The result of such a dispersion is that for Q

slightly greater than the asymptotic value, there are

two surface waves, with their phase fronts propagating

in the positive x-direction, and one of them is a back-

ward wave. Also, for values of Q slightly less than the

asymptotic value and for sufficiently slmall (3, there are

three surface waves of Type 2 of which one is a back-

ward wave. The same general behavior is exhibited by

the two dispersion curves which correspond to negative

values of the wave number. It is seen that for R = 0.5,

the asymptotes for the two negative Type 2 surface

waves coincide. Also, the numerical results indicate

that, in general, only one of the dispersion curves,

namely that which has a higher frequency cutoff, has

a backward wave region.

Having obtained numerically that the dispersion

curves for the Type 2 surface waves have asymptotes,

it is an easy matter to obtain the equations for the

asymptotes from (21). For I ~, I -+ w, with the help of

(4b), (21) yields

/(=( Q2– R2_l) R )~sgnf, —f12+Rz . (23)

The positive value of Q which satisfies (23) is given by

R+4R’+2
Qol = —

2
r S>>o (24)

–R+4R’+2
QU2 =

2
; fl~s = R ~, ~: O. (25a, b)

Since ] ~,, I = w corresponds on the dispersion curve to a Q

given by (24) and (25), it follows that f2=f201 and !l=fl.~,

flas are the asymptotes for the dispersion curves cor-

responding to positive and negative WiIlV(2 numbers

respectively. Note that Q=z =!i?ti~ for R = (). !5. Hence, for

R = 0.5, there is only one asymptote on the negative

side, and this is also obtained numerically as can be

seen in Fig. 4. The other asymptotes in F’igs. 3–5 are

precisely those given by (24) and (25).

It was noticed that the dispersion curves for the Type

2 surface waves always approached the asymptote from

smaller values of Q This can easily be proved with the

help of (21). For very large ~,, (21) after some simplifica-

tion, yields

1 62—1—61
—= —.
2{82 ~z — 3el — 612 + &

(26)

As ~= becomes very large, the left side of (26) becomes a

very small positive number. If the expressions given in

(4b) for c1 and ~1 are substituted on the right sicle of (26)

and Q is set equal to QO+8, where Q. is one of the asymp-

totes given by (24) and (25), and 8 is am arbitrarily

small real number, it is found after considerable nlanipu-

lation that 6 is negative; from this result, it is obvious

that the dispersion curves approach the asymptotes

from smaller values of Q. As a consequence, it is clear

that the dispersion curves, when they cross the asymp-

totes, do so an even number of times. Even though it is

difficult to deduce theoretically from (21), the numerical

results as depicted in Figs. 3–5 indicate tlhat the asymp-

totes are crossed at most, twice.

In Fig. 6 (page 536), the dispersion curves for the

Type 2 surface waves are shown for R = ().,5 and for vari-

ous values of the sheath thickness ~. The dispersion

curves for any value of /3> 10 do not differ appreciably

from those for ~ = 10. Note that for large values of ~ such

as 10, the dispersion curves do not possess any backward

wave regions. If ~ is reduced, the phase velocity of the

surface wave is found to increase, and for /3= 0.34 in the

present example, the dispersion curve corresponding to

positive wave numbers develops a backward wave re-

gion. For this @ (see inset to Fig. 6) at cel-tainl frequen-

cies, there are three surface waves of which one is back-

ward. Also, there is a high frequency cutoff Q which is

less than Q.l, and in the frequency range flUI>ft>QC,

there is only one forward surface wave. Any further de-

crease in ~ results not only in speeding up clf the for-

ward and the slowing down of the backward surface

waves but also in the increase of the cutoff frequency

Q,. Finally for some value of ~, namely ~ = 0.32 approxi-

mately, in the present example, the high frequency
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cutoff Q, becomes greater than W], and the dispersion

curve overshoots the asymptotic line. For extremely

small sheath thickness such as (3== 10–3, the cutoff fre-

quency ft. approaches Q = v’1 +R2.

For the case R = 0.5, the two asymptotes correspond-

ing to negative values of (., coincide. Hence, both the

dispersion curves for ~ = 10 approach this common

asymptote; also they have no low frequency cutoff or

backward wave regions. As ~ is progressively reduced,

the general behavior of the dispersion curve correspond-

ing to the faster of the two waves, is the same as that of

the dispersion curve corresponding to positive f.. But

the phase velocity of the slower of the two waves is pro-

gressively reduced as the sheath thickness is made

smaller, with the result that the corresponding disper-

sion curves do not exhibit backward wave regions nor

do they overshoot the asymptote. The dependence of

the dispersion curves on the sheath thickness, as de-

scribed above, is true even when R is not equal to 0.5

as can be inferred from Fig. 5.

The phase velocity of the surface waves is easily seen

to be given by cO/{, where COis the velocity (of electro-

magnetic waves in free space. Since {, ~ 1, it follows that

the surface wave is always a slow wave. ‘l%e phase veloc-

ity of the Type 2 surface waves at extremely low fre-

quencies reveals certain interesting features. With the

help of (4b), (21) for very small Q becomes

When the roots of (27) are obtained as a power series in

Q and only the leading terms are retained, the result is

r.=1 (28a)

{, =.-l (28b)

{, = – 41 + R’/l? (28c)

It has been shown [1o] that two unidirectional surface

waves can exist along the interface between a semi-

infinite free space and a semi-infinite gyrotropic dielec-
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tric. The surface wave traveling in the positive (nega-

tive) x-direction [Fig. 7(a) ] has a high frequency cut-

off at Q =%1(W2). Both these surface waves at extremely

low frequencies, travel with a phase velocity GO. The

exponential attenuation of the wave transverse to the

interface in the plasma and in free space are, respec-

tively, governed by the factors exp (-- ko<l E/Cl I +~.2)z

and exp ( —kotiK.2— l)z. since as Q+O, I C/CI] + cc, and

I (, I +1, it follows that the surface wave is extremely

rapidly attenuated in the plasma and practically unat-

tenuated in free space. Therefore, the termination of the

plasma by a perfectly conducting screen, parallel to the

interface, should not materially affect these surface

waves. These unidirectional surface waves may then

—.

poles are conveniently distinguished by the additional

subscripts~ and b. The contours for the integrals- (7a, b)

are along the real axis in the ~-plane as shown in Fig. 8.

The surface wave poles are on the real axis, and the

integration contour has to be suitably indented (see Fig.

8) in the vicinity of these poles, such that the radiation

condition is satisfied. For x >0, the integrids may be

evaluated by closing the contour in the upper half of the

~-plane. The contribution to the integrals (7a, b) is the

sum of the residue at the poles and a branch-cut in-

tegral. For sufficiently large ] x I , the branch-cut con-

tribution is negligible compared to that due to the pole.

Hence, for large positive x, after some simplification, the

following results are obtained:

(29b)

.—
— axOeEzOe14k,2 — kz

2) H,’(*, z) = ~ik,x–’’2.ko2(s (d)d)

A’(k,)

be easily identified with the Type 2 surface waves

whose dispersion curves have for their asymptotes Q

=&l and Q =Qa, and whose phase velocities for Q+O

are given by (28a, b). These Type 2 surface waves may

be considered to be essentially guided along the inter-

face between free space and the plasma slab.

Also, it has been shown [9], [11], [12] that unidirec-

tional surface waves traveling in the negative x-direc-

tion for O <Q <R and in the positive x-direction for

4J+R2<Q<c0, are supported by a perfectly con-

ducting screen covered with anisotropic plasma [Fig.

7(b) ]. It has been suggested [9] that these unidirectional

surface waves become leaky waves when the plasma

thickness is finite. While the surface waves in the fre-

quency range /1 i-R2 <Q < cc change into complex

waves [4] for a finite thickness of the plasma, the same is

not true for the surface waves in the frequency range

O<Q < R. The unidirectional surface wave on a perfectly

conducting screen covered with plasma, has the

spatial dependence of the form exp( –koti~ X– ( I ~zl

/V~)Z). From (4b) it is obvious that for QaO, the nor-

malized wave number of this surface wave is ~1 +R2/l?

which is the same as given in (28c). Note that I CZI

//~-+ co as Q~O. Therefore this unidirectional surface

wave is extremely rapidly attenuated in the plasma and

hence, should not be affected by terminating the plasma

by free space at a finite distance from the perfectly con-

ducting screen. Consequently, it is proper to conclude

that the Type 2 surface wave, on the anisotropic slab be-

longing to the dispersion curve having for its asymptote

Q = ila~ = R, is essentially guided by the perfectly con-

ducting screen.

V. POWER IN THE SURFACIZ WAVES

It is proposed to determine the surface and the space

wave parts of the total field by evaluating the integrals

(7a, b). The forward and the backward surface wave

where I and I I refer, respectively, to the plasma and the

vacuum regions and A’ (k,) equals d/dfA(~) evaluated

at ~ = k,. The expressions (29a, b) are appropriate only

to the Type 2 surface waves. It is not difficult to write

the corresponding forms suitable for the Type 1 surface

waves. Obviously, 17Vs(x, z) given in (29a, b) represents

surface waves propagating in the positive x-direction

and exponentially attenuated in the z-direction in the

vacuum region.

Let P,+I and P,+rI be the power transported by the

surface wave per unit length of the source in the positive

x-direction in the plasma and the vacuum regions, re-

spectively. Then, it can be shown that,

t
P,+I = – ~ Re sE.’(x, Z) ~us*(x, Z)dZ

o

m

P,+II = – ~ Re sEz’(.r, z) z7u’’~(.v, Z)dz. (30)
t

Posit ife backward

Fig. 8—Contour of integration in the ?-plane.
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On using (5) and (29) in (30) and simplifying the result-

ing expression with the help of (8) and (1 1), it follows

that

where,

A ‘+{’12(’s2-:)- “V==l+’’’S)2} ‘32a)

Sepfember

(31a)

(31b)

(“b)

(32c)

(32d)

The total power transported in

by the surface wave is given by

P,+ = P,+I +

the positive x-direction

P.+ll. (33)

The power transported in the negative x-direction in the

regions I and II and the total power transported in the

negative x-direction, are denoted by P,–l, P,–ll, and

P._, respectively; the expressions for these may be

evaluated in a similar fashion and are found to be the

same as the corresponding quantities for the positive x-

direction, with an added minus sign. For a positive for-

ward and a negative backward surface wave pole, P,+

will be positive, showing that these poles contribute to

power transport in the positive x-direction. Similarly, a

negative forward and a positive backward surface wave

pole will contribute to power transport in the negative

x-direction.

In the rest of this paper, only normalized powers will

be used, and these are obtained by the removal of the

factor ~weOE,O’. With the help of (31), the normalized

powers are evaluated as a function of sheath thickness

for two sets of values for the parameters R and Q, and

the results are depicted in Figs. 9 and 10. For R = 0.5 and

Q = 0.5514 and for the range of sheath thickness shown

in Fig. 9, there is one positive forward, one negative

forward, and one negative backward surface wave pole.

Consequently, a forward wave and a backward wave

contribute to power transport in the positive x-direction

whereas the power transport in the negative x-direction

is due only to a forward wave. It can be seen from Fig.

9, that the backward wave transports considerably more

power in the positive x-direction than the simultane-

ously excited forward wave. For the situation shown in

Fig. 9, it was found that no matter whether it is a back-

ward wave or a forward wave, for a particular ~, the

slower wave transported more power than the faster.

Since the backward wave happened to be the slowest, it

carried more power.

For R=O.5 and Q= 0.9991 (Fig. 10), there are no

negative poles. For each sheath thickness ~, there is one

backward and two forward surface wave poles, and

these are all positive. The power transport in the posi-
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Fig. 10—Power in the surface waves as a function of P.

tive x-direction is contributed by two forward waves

whereas, the power transport iu the negative x-direction

is due only to a backward wave. Also in this case, the

faster wave transported more power than the slower

wave. Since a backward wave is always accompanied by

a faster forward wave, the power transported by the

faster forward wave is higher than that ,of the slower

backward wave. In the negative x-direction, only the

backward surface wave exists, and this makes i t possible

for verification by a suitably designed experiment.

VI. POWER IN THE SPACE JN~vws

The space wave part of the total field is obtained by

performing a saddle-point evaluation of the integral

(7b) with the following result for k, O>>l;

d e
~koz sin ~ — –- COS26~i(korlrl+)

El
——

“-~2~kop
—— (34)

A(kU COS ($)

X=pcos+ z = p sin 4. (35)

The outward power flow per unit area, per unit distance

in the y direction at an angle @, is obtained from (34)

using (5 b), (8) and (35) to be

3, = ~ Re j3. E(P, d) X H*(P, 4)

where

———

“[sin’+{c’de- 4‘:1cos~ l#J Cos ,6 / — -– cos~ q5

d e –1

Cosz $} ~ sinz ~ — — ~o~~ +

El

for 0:< C$< n-. (37)

radiation pattern f(d) given by (37), isIn Fig. 11, the

plotted for the case R = 2.0 and Q = l. O~for ten different

values of the sheath thickness ~. It is seen that there is

always a broad rrlaximurn near the bro,zdside direction,

a null in the end-fire direction, and in between, sharply

defined peaks whose number increase with the sheath

thickness f?.
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Fig. 1l—Radiation pattern: R= 2.0.
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Fig. 12 (left )—Power in the surface wave (P,s) and in the
radiated space wave (PR) as a function of p.

Fig. 13 (right)—Efficiency of excitation of surface
waves as a function of p.

The total power radiated in the space waves, after be-

ing normalized, as before is given by

PR = ; j’o”f (@)@. (38)

The value of PR for the case R= 2.0 and Q= 1.0 is

plotted in Fig. 12 as a function of the sheath thickness (3.

As the sheath thickness /3 is increased, the total power

in the space waves oscillates several times and that in

the surface wave oscillates once, but eventually both

approach a constant value.

For R=2.0, Cl= 1.0, and 15/3S 10, there is one posi-

tive and one negative forward surface wave pole. The

normalized surface wave powers, P.– and P.+ trans-

ported in the negative and the positive x-directions, and

therefrom the total power in the surface wave P,= P,_
+P,+, are evaluated. The total power P, carried by the

surface waves is also plotted in Fig. 12, as a function of

the sheath thickness P. It is seen that the surface wave

power also approaches a constant value for large sheath

thickness and, for the present example, this constant

value is the same as that approached by the radiated

power PE.

The efficiency of excitation q of the surface wave is

defined as

~ = Ps/(Ps + PR) (39)

where P, and PR are the powers propagated in the form

of the surface and space waves respectively. For

R = 2.0 and Q= 1.0, the efficiency T is plotted in Fig. 13.

Except for extremely small 6, a considerable portion of

the total power is seen to be propagated in the form of

the surface waves. In the present example, q approaches

0.5 for very large /3 showing that the total power radiated

by the source is equally divided between the space waves

and the surface waves. Also there is a particular value

of sheath thickness for which q is a maximum. The

excitation efficiency ~ will be different for other values

of the parameters Q and R as it also is for a distributed

source, which can be designed to put relatively more

power in the surface waves and less into the space waves.

From Fig. 4 it is obvious that the negative surface

wave pole belongs to the dispersion curve which has for

its asymptote Q =R. With the help of the discussion in

Section IV, it follows that the surface wave contributed

by this pole is essentially guided by the perfectly con-

ducting screen. The arguments leading to this deduc-

tion are still further strengthened by a comparison of the

magnitudes of P,–l and P.-ll which are the powers trans-

ported in the negative x-direction in the plasma and

vacuum regions, respectively. Except for small sheath

thickness such as (3= 1.0, it is found that PJ1 is negli-

‘. For/3 ~ 2.0, P,_rr is less than onegible compared to P.–
per cent of P._r and for D = 10, P,-rr is less than 10–3

per cent of P.–r. These results may be interpreted to

mean that this surface wave is essentially guided by the

perfectly conducting screen. In the present example, it is

found also that P,+ is considerably smaller than P,– and

for large sheath thickness, P,+ is negligible compared to

P,_. As the sheath thickness is increased without limit,

the surface wave transporting power in the positive x-

direction becomes progressively extinct and in the limit

of semi-infinite plasma only the surface wave transport-

ing power in the negative x-direction remains. This is

exactly what is to be expected from the results of the

previous investigation [11 ] which treated the excitation

of surface waves on a perfectly conducting screen
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covered with a semi-infinite layer of gyrotropic plasma.

In conclusion, it is pointed out, that a comprehensive

treatment of the surface waves on a perfectly conduct-

ing screen covered with an anisotropic plasma sheath, is

given for one simple orientation of the external mag-

netic field. The results of this paper are beIieved to

provide an interesting extension to the results obtained

by Tamir and Oliner [3] for the isotropic case.
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Back$cattering Measurements of a Slowly Moving Target
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Summary—A basic problem in the measurement of back-scatter-

ing cross sections is the separation of the desired target-scattered

signal from the undesired background reflections. An additional

problem may be the separation from the target-scattered signal of

signals directly coupled from the transmitter to the receiver. His-

torically, these have been overcome in several waw: 1) a reference

signal has been used to cancel the undesired signals when measur-
ing a fixed target, 2) a reference signal has been used to override

the undesired signals when measuring a rapidly moving target, and
3) an average curve has been fitted to data taken with a target at sev-

eral positions.
Two usefnl alternative techniques are described herein. A can-

cellation procedure performed while the target is slowly moving is
shown to be effective in a much poorer environment than the static
nulling procedure. The use of a reference signal to override the un-

desired signals is shown to be directly applicable to a slowly moving

target procedure, thus simplifying the mechanical problems in meas-

uring bulky targets. With a simple experimental setup, back-scatter-
ing cross sections 33 db below a square wavelength at 11 Gc can be
measured at a range of 150 cm when transmitting 400 mw. These
readings can be taken in an environment 20 to 30 db worse than
that usually considered necessary for scattering measurements by
the static null procedure.
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INTRODUCTION

T

HE THEORETICAL determinaticJn of the back-

scattering cross section of any except simple sym-

metrically shaped objects is exceedingly difficult

because of mathematical complexities. Even with sim-

ple shapes, it is satisfying to check theory with experi-

mental results. Thus a number of experimental pro-

cedures have been developed for measuring the back-

scatter cross section of objects with complex shapes.l–’
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