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Summary—A treatment of the excitation of unidirectional plane
surface waves on a perfectly conducting screen covered with an
anisotropic plasma sheath is given for the case in which the external
magnetic field is oriented parallel to the screen but perpendicular
to the direction of propagation. The dispersion relations for the sur-
face waves and their dependence on the strength of the external mag-
netic field and the sheath thickness, are discussed. For sufficiently
small sheath thickness, backward surface waves are found to exist.
The powers carried by the surface waves and the space waves are
evaluated, and the efficiency of excitation of the surface waves are
determined as a function of sheath thickness for a typical set of
parameters. The power carried by the forward and backward sur-
face waves are compared for two cases in which, in a given direction,
either one or both of these exist.

I. INTRODUCTION
T HE EFFECT of a grounded dielectric sfab on the

radiation pattern of an electromagnetic source has

been studied by a number of investigators. A
majority of these investigations pertain to the case of a
slab of isotropic dielectric. A complete survey of the
relevant literature may be found in the recent work of
Oliner and Tamir {1]-[4] who have given a compre-
hensive treatment of the electromagnetic field of a
source-excited, isotropic plasma slab. There have been
relatively fewer investigations of the effect of a slab of
anisotropic dielectric. Wait [5], [6] has treated the case
of a thin plasma sheet in free space as well as in the
vicinity of a ground screen. The radiation pattern of a
line source of magnetic current embedded in a plasma
slab has been investigated {or the case of an external
magnetic field, perpendicular to the line source by
Shore and Meltz [7] and parallel to it by Hodara and
Cohn [8]. Ishimaru [9] has given an elegant treatment
of the effect of leaky waves on the radiation from a
plasma sheath. With the exception of the work of Wait,
who has treated only the case of a thin plasma sheet,
all of the above investigations of the anisotropic slab
problem have been restricted to the treatment of the
radiation pattern only. A systematic investigation of the
wave supporting properties of an anisotropic slab, sim-
ilar to the one carried out by Oliner and Tamir for the
isotropic case, is not available.

In this paper, a treatment of the radiation charac-
teristics of a slot excited plasma slab is given for a par-
ticularly simple orientation of the external magnetic
field. The slot is assumed to be infinitely long and
infinitesimally narrow, with the external magnetic field
oriented parallel to the slot. Particular emphasis is
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placed on the characteristics of the surface waves
guided along the plasma sheath. This problem is the
same as the one investigated by Hodara and Cohn
[8] who have not, however, considered the excitation
of the surface waves but have restricted their atten-
tion only to the radiation pattern.

The dispersion relations for the surface waves and
their dependence on the strength of the external
magnetic field and the sheath thickness, are examined
in detail. For sufficiently small sheath thickness, back-
ward surface waves are excited. The surface waves
propagating in the two directions have different char-
acteristics. The reversal of the direction of the external
magnetic field reverses the direction of propagation of
the surface waves. The powers carried by the surface
waves and space waves are evaluated and the efficiency
of excitation of surface waves determined as a function
of the sheath thickness.

The power carried by the forward and the backward
surface waves are compared for two cases in which
either one or both of them travel in a given direction.
For appropriate parameter values, only the backward
surface wave may exist in a particular direction, en-
abling the possibility of its detection experimentally.

A comparison of the surface wave dispersion obtained
in this case, with those for a perfectly conducting screen
covered with a semi-infinite layer of plasma and for a
plane interface between a semi-infinite free space and a
semi-infinite gyrotropic plasma, is made for the low
frequency limit. This enables the assessment of the
importance of the role played by the two interfaces, the
ground screen and the vacuum-plasma interface, in guid-
ing the surface waves. There are three low-frequency
surface waves, one of which may be identified as the
unidirectional surface wave guided by the conducting
plane and the other two, as the surface waves guided by
the vacuum-plasma interface.

1I. FORMULATION OF THE PROBLEM

Consider a perfectly conducting screen of infinite ex-
tent, located in the xy-plane, where x, vy, and z form a
right-handed rectangular coordinate system (Fig. 1).
The region — o <x<w, —w <y< o, and 0<z<d is
filled with uniform plasma, and the rest of the half-
space 2> 0 is vacuum. At x =0, on the screen, there is a
slot which is infinitely long in the y-direction, infinitesi-
mally narrow in the x-direction and uniformly excited
with an electric field in the x-direction. The source may
therefore be represented by

E(x, 0) = F,(x). ey
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Fig. 1—Geometry of the problem.

A uniform static magnetic field By is impressed in the
y-direction throughout the plasma.

The source (1) may be shown [10], [11] to excite
only the £ mode which consists of a single component
of the magnetic field H,, specified by the following wave
equations:

Region 1
02 9?2
+—+k:lH,x,z=0 0<z<d 2
[+ — (5, 2) @
Region 1T
92 02
[ + + koz]Hy(x, 2) =0 d<z< w (3)
dx? az*
where,
€ 2 2
k2 = wlugeg — = koz_(il_ﬂ = kg2 i (4a)
€1 €1 €1
Q0 — R2—1 R w
€1 = bl €y = ) = —>
Q% — R? Q(0Q* — R?) wp
We
R=—, (4b)
Wp

and ., €, wp, and w, are, respectively, the permeability
and dielectric constant pertaining to vacuum and the
plasma and the gyromagnetic frequency of the elec-
trons. The nonvanishing components of the electric
field E.(x, z) and E.(x, z) are obtained with the help of
the following relations:

Region I
—iél (9 €9 6
E.(x,2) = — — — — VH,/(x, 2) (5a)
wepe 02 wege OX
i€1 6 €9 a
B9 = (25 2= 2 D g
wepe 90X wepe 03
Region IT
—1 0
E1<JC, Z) = Hy(xy Z):
WeE dz
7 4
E.(%,8) = — — H,(x, 3). (5b)
wey 0x

Note that all the field components are independent of
¥, and the harmonic time dependence e~ is implied
for all of them.

In addition to the radiation condition at 2= » and
the boundary condition (1) for z=0, the following
boundary conditions must be satisfied at the vacuum-
plasma interface:

H,(x, d7) = Hy(x, d*); Eu(x,d7) = Exx,d7). (6)

The solutions of (2) and (3) together with (1) and (6)
may be shown to yield the following integral expres-
sions for H,(x, 2):

*® wegeFLo

1
H/x,2) = er_w 2400)

+ (af — ebo — dexf)em D gxtedg
for0 <z <d (7a)

1 pe

27rf

Kélé + efg + fexf)ert D)

wepeF 061§

Hy(x,3) = AT

€i£°(z_d)+i§-':d§-

ford <z < o (7b)
where
A(¢) = eertty cos &d — i{k2612 — 2 — iegef&} sin &d  (8)

and

+ VE = for B> ¢
ST L ETE dor kh<y

+ VkE =2 for ko> ¢
T VE TR for k<t )

ITI. SINGULARITIES OF THE INTEGRAND

It is easily seen that the integrands in (7a, b) are even
functions of £ and the branch points occur on the real
axis only for {= 4 ko The poles of the integrands in
(7a, b) obviously occur at the zeros of A({). The neces-
sary condition for Hy(x, g) to have surface wave con-
tributions is that A({) should have real zeros, k,. Conse-
quently, the real roots k&, of

A) =0
will be considered first. Let
E = koo Eo = koao

(10)

ks = kOg‘s kOd = 18> (11)
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Fig. 2—e, e, and ¢/e as a function of Q.
where it might be noted that {, is nondimensional. In o >e>1 for 0<Q2<R (14a)
i f (9) and (11),1i
view of (9) and (11), it follows that 1>a>0 for O< Q< (14b)
+4/Z_§2 —x <a<0 for R<Q<Q (14c)
o = ° for — 2 3 &S0 for Q@SR (14d)
. o € €1
+l/‘/$s““? €g = — for Q=0 (14e)
1
N <1 f Q> Q 144
Y i . € or 2 (146)
ay = oo for 122 12 €
+ vt — 1 0<—<1 for (1< Q<1 (14g)
€1
Together with (8) and (11), (10) may be recast in the and &< Q < @
form n B )
€
— oo 1<—<w for 1<Q< (14h)
tan Ba = - (13) €1
&P e
1 -2 — ¢ .
€1 €1 - < — < 1 for 0 <Q <Y (141)
€
The right-hand side of (13) is not an even function of and Q< Q < Qs
¢, with the result that the real roots ¢, of (13) are not
symmetrical about {,=0. It may be shown that e € .
. . . —= = f =
changes sign when the direction of the external mag- €1 * or 2=0 (14))
netic field is reversed. Also when €; and {, both change
sign, (13) is unchanged. Therefore, the reversal of the where
direction of the external magnetic field is seen to result
in the interchange of the positive and negative roots of TR4+VR*+4 I
(13). Q13 = T 2= 4/ 14 R2. (15)

1t is useful to examine first, the behavior of €1, €2, and
¢/€1 as a function of Q. With the help of (4b), the follow-
ing results may be easily established:

The behavior of €y, €, and €/e; as a function of €, is de-
picted in Fig. 2 for a particular value of R.
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In determining the real roots of (13), it is advanta-
geous to distinguish the following four cases:
| o]

case 1: &2 <1 §,2§i a=|a] ag =

€1

= o

I
EX
g

€
case 2: (2 <1 22— «a

€1

case 3: {2 >1 §,2,<_—6« a=|al ap=1|a|
€1
case d: §221 §2>— a=ilal ap=1ilas]. (16)

€1

For the cases 1 and 2, (13) which specifies {; becomes

—ilal [a

case 1: tang| al _ an
case 2: tanhﬁ{ a] B & e
I Gy P
€1 €1

For (17) to hold, the following equalities must be simul-
taneously fulfilled:

2
<1——§—8>tan6=0
€1

<]“Haol —*:j—fslaoltan[?):o (18, 0)

case 1:

case 2: same as (18) with tan replaced by tanh. (19a, b)

Since {,2<(¢/e1), it follows that 1-—({,2/€1) > (e22/€:2)
and therefore, (18a, b) and (19a, b) are satisfied only for
a=0. Also the numerators of the integrands in (7a, b)
are seen to vanish for || =0 and hence, |a| =0is nota
pole. Therefore, the integrands of (7a, b) do not have
real poles in the first two cases. Note that both the
cases 1 and 2 correspond to a fast wave, and it is to be
expected that there should be no fast wave with real
propagation constant for an open structure such as the
one considered in this paper.
For the cases 3 and 4, (13) becomes

[allaol /(1= 54+ 2wl

tan B]a] for case 3

(20)
21

A real ¢, which satisfies (20) and (21) can be found. In
view of (14h), the conditions {,2>1 and {,2<¢/e; can
be simultaneously fulfilled only in the frequency range
1<Q <1+ R, but the conditions {,2>1 and {,2>¢/e;
can be satisfied in the entire frequency range. Since {, is
real and {,2>1, it follows from (7a, b) that the fields in
the vacuum region for the cases 3 and 4 decay ex-
ponentially transverse to the slab and propagate with-
out attenuation along the slab. For the case 3 (case 4),
the contribution to H,(x, 2) given in (7a) arising from
a pole specified by (20) [(21)] is such that the fields

- {tanhﬂ[a{ for case 4
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inside the plasma slab have a functional dependence on
2z which is of the trigonometric (hyperbolic) type, and
the corresponding surface wave will be designated for
convenience as Type 1 (Type 2). Evidently, Type 1 sur-
face wave exists only in the frequency range 1<Q
<A/1+4+R%

For v/1+R*<Q< =, if there is any surface wave at
all, it should obviously be of the type 2 and, therefore,
should arise from the real roots of (21). It will be shown
now that (21) has no real roots for v/14+R2<Q< ». Let
the denominator of the left side of (21) be denoted by
D(¢,). For v/14+R2<Q< w0, it follows from (14b and
6) that 0<e;<1and 0< || < 1. If the orientation of the
external magnetic field is such that ey{, <0, then D({,)
<0 over the entire range of {,. Even if e2{,>0, it can be
shown that D(¢,) <0. Let P({.) = (| e &o] o)) /(£:2—e€1).
It follows from the definition of D({,) and the fact
that {,>1>e€, that D({,) <0 provided P(¢,) <1. Obvi-
ously, at the end points of the range of {,, namely 1 and
o, P({)<1. It can be easily shown that P({,) is a
maximum when {,=+/e,/(2a—1). Consequently for
0<e1 <43, P({,) has no maximum in the range 1 <¢, < .
Hence, it follows that £({,) <1, as at the end points for
the entire range of {,. For 3 <e;<1, P({,) has a maxi-
mum which is given by

1

20 /- R*—1

P(g‘S)max =
For v/14+R<Q< o, P({Jmax and hence, P({,)<1.
Therefore, D({,) <0 for the entire range of {,. Since the
right-hand side of (21) as well as the numerator of the
left side of (21) is always positive for 1<{, < =, it fol-
lows that no real {, can satisfy (21) for v/14+R2<Q<
since the denominator of the left side of (21) is always
negative. Hence, it follows that the Type 2 surface
waves arising from the real roots of (21) exist only in the
frequency range 0 <Q <+/1+4+R?. Since the Type 1 sur-
face waves exist only for 1 <Q<+/1-+R?, it is clear that
the surface waves are restricted to the frequency range
0<Q<V1+R

IV. DispERsIoN CURVES FOR THE SURFACE WAVES

The real roots {, of (20) and (21) were obtained
numerically for three values of the parameter R which is
proportional to the external magnetic field. Since the
frequency w and the wave number k, of the surface
wave are respectively proportional to @ and Q¢,, the dis-
persion diagram corresponds to a plot of  vs Q¢,, and
these plots are depicted in Figs. 3-5 (pages 534-535). In
each case, the results are given for three values of the
thickness parameter 8, namely, 8=10, 1, and 0.1.

As was stated before, Type 1 surface waves exist only
for 1 <@<~+/1+R2 An examination of Figs. 3-5 shows
that for Q=1 there are no Type 1 surface waves. As
Q is increased beyond 1, the first Type 1 surface wave
comes into existence at a particular value of 2. When @
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is still further increased, the wave number of the surface
waves increases monotonically; other Type 1 surface
waves appear abruptly and then continue with increas-
ing @ and Q.. Theoretically, for Q= v/1+R2, there is an
infinity of such waves. These surface waves have dif-
ferent characteristics depending on whether they propa-
gate in the positive or the negative x-direction. The
Type 1 surface waves are seen to have a low-frequency
cutoff and are always forward waves in the sense that
their phase and group velocities are of the same sign.
In general, for a given Q in the range 1 <Q< +/1+R2, an
increase in the thickness 8 of the slab, results in an in-
crease of the number of the surface wave poles. It is
to be noted that the surface wave poles in the vicinity
of @=+/14-R?, have not been determined and are not
included in Figs. 3-5.

For the Type 2 surface waves, it is seen that in gen-
eral, there is only one dispersion curve for positive val-
ues of the wave number, but there are two for negative
values of the wave number. For R=0.1, the second dis-
persion curve for the negative values of the wave num-
ber does not show up, but for R=0.5 and 2.0, both the
dispersion curves are clearly seen. The Type 2 surface
waves have no low frequency cutoff. For very large
positive values of the surface wave number, the disper-
sion curve asymptotically reaches a particular value of
2. The dispersion curve always finally approaches the
asymptote from smaller values of ©Q, but for very small
B, it crosses the asymptote twice and then, as for larger
values of 8, it approaches the asymptote from smaller
values of . The result of such a dispersion is that for Q
slightly greater than the asymptotic value, there are
two surface waves, with their phase fronts propagating
in the positive x-direction, and one of them is a back-
ward wave. Also, for values of Q slightly less than the
asymptotic value and for sufficiently small 38, there are
three surface waves of Type 2 of which one is a back-
ward wave. The same general behavior is exhibited by
the two dispersion curves which correspond to negative
values of the wave number. 1t is seen that for R=0.5,
the asymptotes for the two negative Type 2 surface
waves coincide. Also, the numerical results indicate
that, in general, only one of the dispersion curves,
namely that which has a higher frequency cutoff, has
a backward wave region.

Having obtained numerically that the dispersion
curves for the Type 2 surface waves have asymptotes,
it is an easy matter to obtain the equatijons for the
asymptotes from (21). For |{,|—«, with the help of
(4b), (21) yields

1

I

e/(ezsgn{s — 1)

R
(@2 — R — 1) /<—§ sgn & — Qf 4 R2>. (23)

The positive value of @ which satisfies (23) is given by
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Qﬂ=£i¥?32 >0 (24)
Quz = ;Rir%/@ i Qes=R {<0. (25a,h)
Since | {,| = « corresponds on the dispersion curve toa Q

given by (24) and (25), it follows that @ =$,; and @ =Q,.,
Q3 are the asymptotes for the dispersion curves cor-
responding to positive and negative wave numbers
respectively. Note that Q,s=0Q4.; for R=0.5. Hence, for
R=0.5, there is only one asymptote on the negative
side, and this is also obtained numerically as can be
seen in Fig. 4. The other asymptotes in Figs. 3-5 are
precisely those given by (24) and (25).

It was noticed that the dispersion curves for the Type
2 surface waves always approached the asymptote from
smaller values of Q. This can easily be proved with the
help of (21). For very large {,, (21) after some simplifica-
tion, yields

1 € — 1 — ¢

2¢2 ea— 3e1 — €2 e

(26)

As {, becomes very large, the left side of (26) becomes a
very small positive number. If the expressions given in
(4b) for €1 and €, are substituted on the right side of (26)
and  is set equal to Q,4-8, where ©, is one of the asymp-
totes given by (24) and (25), and § is an arbitrarily
small real number, it is found after considerable manipu-
lation that 6 is negative; from this result, it is obvious
that the dispersion curves approach the asymptotes
from smaller values of Q. As a consequence, it is clear
that the dispersion curves, when they cross the asymp-
totes, do so an even number of times. Even though it is
difficult to deduce theoretically from (21), the numerical
results as depicted in Figs. 3-5 indicate that the asymp-
totes are crossed at most, twice.

In Fig. 6 (page 536), the dispersion curves for the
Type 2 surface waves are shown for R=0.5 and for vari-
ous values of the sheath thickness 8. The dispersion
curves for any value of 8> 10 do not differ appreciably
from those for 8 =10. Note that {or large values of 8 such
as 10, the dispersion curves do not possess any backward
wave regions. If 8 is reduced, the phase velocity of the
surface wave is found to increase, and for 8=0.34 in the
present example, the dispersion curve corresponding to
positive wave numbers develops a backward wave re-
gion. For this B (see inset to Fig. 6) at certain frequen-
cies, there are three surface waves of which one is back-
ward. Also, there is a high frequency cutoff Q, which is
less than £,1, and in the frequency range Qu>Q>Q.,
there is only one forward surface wave. Any {urther de-
crease in § results not only in speeding up of the for-
ward and the slowing down of the backward surface
waves but also in the increase of the cutofl frequency
2. Finally for some value of 8, namely 8=0.32 approxi-
mately, in the present example, the high frequency
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cutoff Q, becomes greater than Q,;, and the dispersion
curve overshoots the asymptotic line. For extremely
small sheath thickness such as 8=1073 the cutoff fre-
quency 2. approaches Q= +/1+4R2.

For the case R=0.5, the two asymptotes correspond-
ing to negative values of {;, coincide. Hence, both the
dispersion curves for 8=10 approach this common
asymptote; also they have no low frequency cutoff or
backward wave regions. As 8 is progressively reduced,
the general behavior of the dispersion curve correspond-
ing to the faster of the two waves, is the same as that of
the dispersion curve corresponding to positive {,. But
the phase velocity of the slower of the two waves is pro-
gressively reduced as the sheath thickness is made
smaller, with the result that the corresponding disper-
sion curves do not exhibit backward wave regions nor
do they overshoot the asymptote. The dependence of
the dispersion curves on the sheath thickness, as de-
scribed above, is true even when R is not equal to 0.5
as can be inferred from Fig. 5.

The phase velocity of the surface waves is easily seen
to be given by ¢y/{s where ¢ is the velocity of electro-
magnetic waves in free space. Since ¢, > 1, it follows that
the surface wave is always a slow wave. The phase veloc-
ity of the Type 2 surface waves at extremely low fre-
quencies reveals certain interesting features. With the
help of (4b), (21) for very small Q becomes

R2§s2 _ Rg‘s'\/g‘sz - 1 _ ’\/2-3—2:7
RP+1 QR +1) QVRF1

(27)

When the roots of (27) are obtained as a power series in
@ and only the leading terms are retained, the result is

&o=1 (28a)
&= —~1+ R*R (28c)

It has been shown [10] that two unidirectional surface
waves can exist along the interface between a semi-
infinite free space and a semi-infinite gyrotropic dielec-
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tric. The surface wave traveling in the positive (nega-
tive) x-direction [Fig. 7(a)] has a high frequency cut-
off at @ =0,1(Qs2). Both these surface waves at extremely
low frequencies, travel with a phase velocity co. The
exponential attenuation of the wave transverse to the
interface in the plasma and in free space are, respec-
tively, governed by the factors exp (—kov/|€/e1] +.%)z
and exp (—kov/{:2—1)z. Since as 20, |E/€1‘—>00, and
|§s‘ —1, it follows that the surface wave is extremely
rapidly attenuated in the plasma and practically unat-
tenuated in free space. Therefore, the termination of the
plasma by a perfectly conducting screen, parallel to the
interface, should not materially affect these surface
waves. These unidirectional surface waves may then

— weoeFgo
1) H,,"(x, Z) _ —
A’ (k)
— L2 _ B2
2 Hy(s, ) = weeEqoerv ke k R
A’ (ks)

be easily identified with the Type 2 surface waves
whose dispersion curves have for their asymptotes {
=Q,1 and Q=Q,; and whose phase velocities for 2—0
are given by (28a, b). These Type 2 surface waves may
be considered to be essentially guided along the inter-
face between free space and the plasma slab.

Also, it has been shown [9], [11], [12] that unidirec-
tional surface waves traveling in the negative x-direc-
tion for 0<Q<R and in the positive x-direction for
VIFRI<Q< o, are supported by a perfectly con-
ducting screen covered with anisotropic plasma [Fig.
7(b)]. It has been suggested [9] that these unidirectional
surface waves become leaky waves when the plasma
thickness is finite. While the surface waves in the fre-
quency range +/1+R*<Q< e« change into complex
waves [4] for a finite thickness of the plasma, the same is
not true for the surface waves in the frequency range
0 <Q < R. The unidirectional surface wave on a perfectly
conducting screen covered with plasma, has the
spatial dependence of the form exp(—kover x—(lezl
/v/€1)5). From (4b) it is obvious that for 2—0, the nor-
malized wave number of this surface wave is 4/1+R?*/R
which is the same as given in (28c). Note that | es]
/\/6—1-—>°° as Q—0. Therefore this unidirectional surface
wave is extremely rapidly attenuated in the plasma and
hence, should not be affected by terminating the plasma
by free space at a finite distance from the perfectly con-
ducting screen. Consequently, it is proper to conclude
that the Type 2 surface wave, on the anisotropic slab be-
longing to the dispersion curve having for its asymptote
Q=0,:= R, is essentially guided by the perfectly con-
ducting screen.

V. POWER IN THE SURFACE WAVES

It is proposed to determine the surface and the space
wave parts of the total field by evaluating the integrals
(7a, b). The forward and the backward surface wave
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poles are conveniently distinguished by the additional
subscripts f and 5. The contours for the integrals (7a, b)
are along the real axis in the {-plane as shown in Fig. 8.
The surface wave poles are on the real axis, and the
integration contour has to be suitably indented (see Fig.
8) in the vicinity of these poles, such that the radiation
condition is satisfied. For x>0, the integrals may be
evaluated by closing the contour in the upper half of the
¢-plane. The contribution to the integrals (7a, b) is the
sum of the residue at the poles and a branch-cut in-
tegral. For sufficiently large |x|, the branch-cut con-
tribution is negligible compared to that due to the pole.
Hence, for large positive x, after some simplification, the
following results are obtained:

[m/k_,ﬁ " Rtcosh (3 — DVE? — B — [ev/BT — ko + ek, sinh (z — d)VES — ke (29a)

(29b)

where I and 11 refer, respectively, to the plasma and the
vacuum regions and A’(k,) equals d/d¢A({) evaluated
at { =k, The expressions (29a, b) are appropriate only
to the Type 2 surface waves. It is not difficult to write
the corresponding forms suitable for the Type 1 surface
waves. Obviously, H,*(x, z) given in (29a, b) represents
surface waves propagating in the positive x-direction
and exponentially attenuated in the z-direction in the
vacuum region.

Let P,,! and P,.™ be the power transported by the
surface wave per unit length of the source in the positive
x-direction in the plasma and the vacuum regions, re-
spectively. Then, it can be shown that,

1 12
P l=— o Re f Es(x, 2) H, (=, 2)dz
0
1 [}
P = — 0 Re f E#(x, 2)H,*(x, 5)ds.  (30)
¢
Im¢g
\\
Negafive backward Positive forward
ksb/ . — U k‘f/
- > k.sf 'ko uko -/ ¥4 ;(.b ReC
Neqative forward| - Positive backward

Fig. 8—Contour of integration in the ¢{-plane,
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On using (5) and (29) in (30) and simplifying the result-
ing expression with the help of (8) and (11), it follows
that
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R sinh 283 /;‘:2 — i_i
1 B € C 1 €1
Pl = —wepFe? —— | A8 + ——{1 — cosh 264/522 ~ *} t ) (31a)
2 eD? 2 €1 2 /‘/{ \ €
S
(52-2)
. 5o G\ € 3
Y v e Gt
where,
61‘('5 € R
A= ; {ef({ﬁ — ——) — (/02— 1+ e2§3)2} (32a)
€1
B = — élzg‘s(e\/g‘sz -1 "{— 525‘3) + 6?2{512 <§_32 - _e‘) + (é\/f'sz —1 + eZ?s)g} (32b)
€1
exfs € - € N
C = 9 {612 <§-s2 - —> + (e\/§‘82 -1 + €2§s>2} — €1€2 <§32 - _> (6\/§‘82 -1 + 62§8) (32C)
€1 €1
_ fea-< -
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D=¢|—«a i —511/ €1+ o +~“:§: + ef¢, /§ —
P — oot 1/2—i V?Z—i £ — —
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T e, T PRU/A
-coshﬁ/‘/fs“—e—l + | —afBvVEE — 1 — 28+ e/ — +W:_1 sin :31 s _—6;' (32d)

The total power transported in the positive x-direction
by the surface wave is given by

P6+ = P3+I + P‘H,II. (33)

The power transported in the negative x-direction in the
regions I and II and the total power transported in the
negative x-direction, are denoted by P, I, P, M and
P,_, respectively; the expressions for these may be
evaluated in a similar fashion and are found to be the
same as the corresponding quantities for the positive x-
direction, with an added minus sign. For a positive for-
ward and a negative backward surface wave pole, Py,
will be positive, showing that these poles contribute to
power transport in the positive x-direction. Similarly, a
negative forward and a positive backward surface wave
pole will contribute to power transport in the negative
x-direction.

In the rest of this paper, only normalized powers will
be used, and these are obtained by the removal of the
factor 1wepE 0% With the help of (31), the normalized
powers are evaluated as a function of sheath thickness

for two sets of values for the parameters R and €, and
the results are depicted in Figs. 9 and 10. For R=0.5 and
=0.5514 and for the range of sheath thickness shown
in Fig. 9, there is one positive forward, one negative
forward, and one negative backward surface wave pole.
Consequently, a forward wave and a backward wave
contribute to power transport in the positive x-direction
whereas the power transport in the negative x-direction
is due only to a forward wave. It can be seen from Fig.
9, that the backward wave transports considerably more
power in the positive x-direction than the simultane-
ously excited forward wave. For the situation shown in
Fig. 9, it was found that no matter whether it is a back-
ward wave or a forward wave, for a particular 8, the
slower wave transported more power than the faster.
Since the backward wave happened to be the slowest, it
carried more power.

For R=0.5 and 2=0.9991 (Fig. 10), there are no
negative poles. For each sheath thickness 8, there is one
backward and two forward surface wave poles, and
these are all positive. The power transport in the posi-
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tive x-direction is contributed by two forward waves
whereas, the power transport in the negative x-direction
is due only to a backward wave. Also in this case, the
faster wave transported more power than the slower
wave. Since a backward wave is always accompanied by
a faster forward wave, the power transported by the
faster forward wave is higher than that of the slower
backward wave. In the negative x-direction, only the
backward surface wave exists, and this makes it possible
for verification by a suitably designed experiment.

V1. POWER IN THE SPACE WAVES

The space wave part of the total field is obtained by
performing a saddle-point evaluation of the integral
(7b) with the following result for &,0>>1;

H,(p, $) = — weerEyoe kot oin?
B s © o cote
pitho—ris) 0 sin ¢ o T cosTé b
v 2mkop A(ky cos ¢)
= p Ccos ¢ z = p sin ¢. (33)

The outward power flow per unit area, per unit distance
in the y direction at an angle ¢, is obtained from (34)
using (5b), (8) and (33) to be

1
Sy = Rep-Ep, ®) X H*(p, ¢)

ko 1 f(¢)
= H ? = wegFne? 36
o, | H,(p, ¢) 7Bt (36)
where
€
f(¢) = esin?¢|— — cos? ¢
€1

e e
. [snrqb{el 4/;; — cos® ¢ cos B /‘/ e—l — cos® ¢

N
€

— ey cos P sin B /‘/—— — cos? d)}
€1

T
+ {er — cos? ¢} 2sin® B Vi — cos® ¢ l
€1 -
foro0< ¢ <7 (37)

In Fig. 11, the radiation pattern f(¢) given by (37), is
plotted for the case R=2.0 and @=1.0, for ten different
values of the sheath thickness 8. It is seen that there is
always a broad maximum near the broadside direction,
a null in the end-fire direction, and in between, sharply
defined peaks whose number increase with the sheath

thickness 3.



540

H L ! ) 1 1 1 1
0 % [ & 30 100 120 10 160 180
& N DEGREES

Fig., 11—Radiation pattern: R=2.0.

osf- ; 4 osF : .

04l -

! 1

_l I 1
8 g0 O 2 4 6

L
8 g 10

1 1
Q 2 a4 6

Fig. 12 (left)—Power in the surface wave (Ps) and in the
radiated space wave (Pg) as a function of 8.
Fig. 13 (right)—Efficiency of excitation of surface
waves as a function of 8.

The total power radiated in the space waves, after be-
ing normalized, as before is given by
1 kg
P = [ seas (39)
271' 0
The value of Py for the case R=2.0 and 2=1.0 is
plotted in Fig. 12 as a function of the sheath thickness 8.

As the sheath thickness 8 is increased, the total power
in the space waves oscillates several times and that in
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the surface wave oscillates once, but eventually both
approach a constant value.

For R=2.0, 2=1.0, and 1<8<10, there is one posi-
tive and one negative forward surface wave pole. The
normalized surface wave powers, P,_ and P, trans-
ported in the negative and the positive x-directions, and
therefrom the total power in the surface wave P,=P,_
+P,,, are evaluated. The total power P, carried by the
surface waves is also plotted in Fig. 12, as a function of
the sheath thickness B. It is seen that the surface wave
power also approaches a constant value for large sheath
thickness and, for the present example, this constant
value is the same as that approached by the radiated
power Pr.

The efficiency of excitation 7 of the surface wave is
defined as

77=Ps/(Ps+PR)

where P, and Pg are the powers propagated in the form
of the surface and space waves respectively. For
R=2.0 and Q=1.0, the efficiency 7 is plotted in Fig. 13.
Except for extremely small 8, a considerable portion of
the total power is seen to be propagated in the form of
the surface waves. In the present example, n approaches
0.5 for very large B showing that the total power radiated
by the source is equally divided between the space waves
and the surface waves. Also there is a particular value
of sheath thickness for which % is a maximum. The
excitation efficiency # will be different for other values
of the parameters & and R as it also is for a distributed
source, which can be designed to put relatively more
power in the surface waves and less into the space waves.

From Fig. 4 it is obvious that the negative surface
wave pole belongs to the dispersion curve which has for
its asymptote Q= R. With the help of the discussion in
Section 1V, it follows that the surface wave contributed
by this pole is essentially guided by the perfectly con-
ducting screen. The arguments leading to this deduc-
tion are still further strengthened by a comparison of the
magnitudes of P, *and P, which are the powers trans-
ported in the negative wx-direction in the plasma and
vacuum regions, respectively. Except for small sheath
thickness such as 8= 1.0, it is found that P, ™ is negli-
gible compared to P,_I. For 3>2.0, P, I isless than one
per cent of P, T and for =10, P, is less than 103
per cent of P, I. These results may be interpreted to
mean that this surface wave is essentially guided by the
perfectly conducting screen. In the present example, it is
found also that P, is considerably smaller than P,_ and
for large sheath thickness, P,; is negligible compared to
P,_. As the sheath thickness is increased without limit,
the surface wave transporting power in the positive x-
direction becomes progressively extinct and in the limit
of semi-infinite plasma only the surface wave transport-
ing power in the negative x-direction remains. This is
exactly what is to be expected from the results of the
previous investigation [11] which treated the excitation
of surface waves on a perfectly conducting screen

(39)
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covered with a semi-infinite layer of gyrotropic plasma.

In conclusion, it is pointed out, that a comprehensive
treatment of the surface waves on a perfectly conduct-
ing screen covered with an anisotropic plasma sheath, is
given for one simple orientation of the external mag-
netic field. The results of this paper are believed to
provide an interesting extension to the results obtained
by Tamir and Oliner [3] for the isotropic case.
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Back-Scattering Measurements of a Slowly Moving Target
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Summary-—A basic problem in the measurement of back-scatter-
ing cross sections is the separation of the desired target-scattered
signal from the undesired background reflections. An additional
problem may be the separation from the target-scattered signal of
signals directly coupled from the transmitter to the receiver. His-
torically, these have been overcome in several ways: 1) a reference
signal has been used to cancel the undesired signals when measur-
ing a fixed target, 2) a reference signal has been used to override
the undesired signals when measuring a rapidly moving target, and
3) an average curve has been fitted to data taken with a target at sev-
eral positions.

Two useful alternative techniques are described herein. A can-
cellation procedure performed while the target is slowly moving is
shown to be effective in a much poorer environment than the static
nulling procedure. The use of a reference signal to override the un-
desired signals is shown to be directly applicable to a slowly moving
target procedure, thus simplifying the mechanical problems in meas-
uring bulky targets. With a simple experimental setup, back-scatter-
ing cross sections 33 db below a square wavelength at 11 Gc can be
measured at a range of 1530 cm when transmitting 400 mw. These
readings can be taken in an environment 20 to 30 db worse than
that usually considered necessary for scattering measurements by
the static null procedure.
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INTRODUCTION

HE THEORETICAL determination of the back-

scattering cross section of any except simple sym-

metrically shaped objects is exceedingly difficult
because of mathematical complexities. Even with sim-
ple shapes, it is satisfying to check theory with experi-
mental results. Thus a number of experimental pro-
cedures have been developed for measuring the back-
scatter cross section of objects with complex shapes.1—7
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